
Often the device is integrated with a sensor, such as a photoelectric device to produce the charge that is being read, thus making the CCD a major technology where the conversion of images into a digital signal is required. Whilst CCDs are not the only technology to allow for light detection, CCDs are widely used in professional, medical and scientific applications where high quality image data is required.
In a CCD for capturing images, there is a photoactive region (an epitaxial layer of silicon), and a transmission region made out of a shift register (the CCD, properly speaking).
An image is projected through a lens onto the capacitor array (the photoactive region), causing each capacitor to accumulate an electric charge proportional to the light intensity at that location. A one-dimensional array, used in line-scan cameras, captures a single slice of the image, while a two-dimensional array, used in video and still cameras, captures a two-dimensional picture corresponding to the scene projected onto the focal plane of the sensor. Once the array has been exposed to the image, a control circuit causes each capacitor to transfer its contents to its neighbor (operating as a shift register). The last capacitor in the array dumps its charge into a charge amplifier, which converts the charge into a voltage. By repeating this process, the controlling circuit converts the entire semiconductor contents of the array to a sequence of voltages, which it samples, digitizes and stores in some form of memory.

0 comments:
Post a Comment